
The WLCG Messaging Service and its Future1

Lionel Cons, Massimo Paladin

CERN - IT Department, 1211 Geneva 23, Switzerland

E-mail: Lionel.Cons@cern.ch, Massimo.Paladin@cern.ch

Abstract.
Enterprise messaging is seen as an attractive mechanism to simplify and extend several

portions of the Grid middleware, from low level monitoring to experiments dashboards. The
production messaging service currently used by WLCG includes four tightly coupled brokers
operated by EGI (running Apache ActiveMQ and designed to host the Grid operational tools
such as SAM) as well as two dedicated services for ATLAS-DDM and experiments dashboards
(currently also running Apache ActiveMQ). In the future, this service is expected to grow in
numbers of applications supported, brokers and technologies.

The WLCG Messaging Roadmap identified three areas with room for improvement (security,
scalability and availability/reliability) as well as ten practical recommendations to address them.
This paper describes a messaging service architecture that is in line with these recommendations
as well as a software architecture based on reusable components that ease interactions with the
messaging service. These two architectures will support the growth of the WLCG messaging
service.

1. Enterprise Messaging
Enterprise messaging[1] is a technology which allows messages exchange between peers and where
the exchange is mediated by messaging brokers. A messaging broker is a server whose role is
to route messages between multiple peers offering different exchange patterns which enable the
peers to customize messages routing.

Messaging enables loosely coupled architectures where producers and consumers do not need
to know about each other; it enables asynchronous communications and offers high flexibility to
client applications.

Messaging can also be explained with a simple analogy: messaging is for software applications
what electronic mail is for human beings.

2. Messaging in WLCG: history
Messaging has been introduced in the Grid middleware in 2008, to simplify and improve several
loosely coupled components that needed to exchange some of their data.

It started as a prototype to evaluate its usefulness in some parts of the Grid middleware, like
monitoring, with a relative low requirements in terms of security, scalability and reliability.

To support this evaluation effort, EGI operated a small cluster of four tightly coupled brokers
running Apache ActiveMQ[12]: two at CERN, one at AUTH and one at SRCE[2].

1 This work was partially funded by the EMI project under European Commission Grant Agreement
INFSO-RI-261611



In this context, messaging has proved to be a very suitable technology ([3], [4], [5], [6], [7],
[8], [9], [10] and [11]). With time, more and more applications wanted to also take advantage of
messaging.

3. WLCG Messaging Roadmap
The interest for messaging as an integration middleware increased both inside CERN (from
the computer center to the accelerators control) and outside (from low level monitoring to
experiments dashboards).

A lot of research and investigations have been conducted by the CERN Messaging Team[13]
and the EMI Messaging Product Team[14]. The requirements have been analyzed, several
messaging technologies have been evaluated and the service architecture has been defined in
order to satisfy the foreseen increase in demand.

This effort lead to the WLCG Messaging Roadmap[15] that aims to address the combined
requirements of potential applications using messaging in the WLCG context. This roadmap
lists main areas for improvement as well as concrete recommendations.

3.1. Areas for improvement
Although the WLCG messaging service is successfully used by Grid operational tools, three
areas has been identified with room for improvement:

Security: security was not a priority in the beginning, the situation changed and it has now to
be taken into account.

Scalability: more and more applications used or wanted to use messaging, yielding to a major
increase in capacity requirements. The monolithic model which was in use could not easily
scale. Different applications may require different broker tunings and in order to get a very
good performance, one may have to select the best technology combination for each use
case.

Availability/Reliability: although the four EGI brokers were part of a kind of cluster, the
whole service needed to be stopped during some interventions (e.g. software upgrades or
major configuration changes). In addition, some applications had single point of failures
(e.g. Apache Camel[16] to aggregate messages): the unavailability of one machine stopped
the application.

3.2. Recommendations
Here are the proposed changes which address the three areas identified in order to provide a
better messaging service for WLCG:

(i) authenticate all messaging clients

(ii) authorize only what is required (deny all by default)

(iii) audit the broker activity

(iv) use application level security

(v) use dedicated messaging services

(vi) scale each service according to its requirements

(vii) loosely connect the services that need to exchange messages

(viii) use standalone brokers instead of tightly coupled ones

(ix) get rid of single point of failures

(x) build more reliable messaging clients



4. Messaging service architecture
4.1. Using dedicated messaging services
The WLCG Messaging Roadmap recommends to use dedicated messaging services. Each service
will use the best technology combination to fulfill the requirements of the applications it supports.
These dedicated services could use different hardware and/or different broker software and/or
different communication protocols.

Figure 1. Dedicated messaging service of independent brokers.

Dedicated messaging services also have a positive impact on security:

• a security attack against one service would normally not impact the other services

• separated services can be more tightly controlled and secured; for instance, a service with
clients using known and fixed IP addresses could have a firewall to limit who can connect
to it

4.2. Scaling each service according to its requirements
A messaging service could be provided by a machine that already provides other services such
as web services or database services. After all, we can see a messaging broker as just one more
daemon to enable on a server.

At the other end of the scale, a single messaging service could have tens of dedicated servers,
running nothing else than the broker daemon. Scaling up may require more powerful hardware
and/or increased network capacity. It all depends on the application requirements.

When multiple machines are used for the same service, we recommend to have them
completely independent. This may put some constraints on the message clients (that may
have to contact several brokers to send or receive the messages they want) but this provides true
linear scalability. In the typical Grid use case (many distributed producers, very few consumers),
this is very easy to achieve as illustrated in figure 1:

• producers connect to any broker (randomly)

• consumers connect to all brokers

This simple architecture has already been validated (e.g. by ATLAS-DDM) and brings
additional benefits:



• improved availability (the service works as long as one broker works)

• simplified management (one can stop/upgrade/restart one broker at a time without
disrupting the service)

4.3. Loosely connecting the services that need to exchange messages
With a monolithic service, any client can connect to any broker and potentially receive or send
any message (provided that security allows it). Once we use different services, how can messages
been shared between applications?

We recommend to use shovels for this. These are dedicated applications that do nothing
but copying messages from one broker to another. They scale very well: if you need more
throughout, just throw more shovels at it. By shoveling only the messages that need to be
shoveled (e.g. with filtering), they minimize the load on the network and on the brokers. They
are also compatible with the proposed enhanced security since, from the broker point of view,
they appear just as normal clients that need to be authenticated and authorized.

These independent services provide application isolation so they increase the overall reliability
by limiting the consequences of a bogus application.

Better reliability must also come from the messaging clients themselves, it is not enough to
be implemented on the server side. Designing and writing a solid message client application is
not straightforward and error handling is often neglected.

5. Messaging applications design
Applications using messaging should have a solid architecture in order to offer redundancy and
reliability. It often happens that reliability is expected from the broker side but not reflected on
the client side. Making full confidence on the broker side is a common mistake on integrating
an application with messaging.

Using messaging in an unreliable way requires very few lines of code, using it in a reliable
way takes much more time and thoughts. All the unexpected behaviors should be taken into
consideration and handled properly, most of the code needed is about exception handling:

• what to do if you cannot connect to the broker? reconnect? how many times? how long do
you wait?

• what if the delivery of one message fails? retry? when to give up? what to do with the
message?

• what if you do not get a reply/acknowledgment quickly enough? wait more? abort?

The problem get even more complicated if a given application need to support multiple
protocol and/or multiple programming languages yielding to code duplication and bugs
multiplication.

5.1. Reusing solid messaging components
We can use LegoTMbricks concept: small, robust and flexible components which can be combined
into complete solutions addressing the most common use cases. The simple bricks which suit
messaging needs are:

Message Queue (MQ): file-system based message queue with a simple yet robust API which
supports concurrent access

Messaging Transfer Agent (MTA): program that can transfer messages between a broker
and a message queue (all combinations)

These two components can be easily combined. In figure 2 it is shown how components can
be combined for the consumer use case and to scale it up in case of bottlenecks:



Figure 2. Messaging bricks and the consumer use case.

• broker: the number of brokers can be increased to support the volume of messages

• MTA: one or more MTA can be configured to consume messages from a broker; having
more than one MTA per broker increase the throughput by load balancing the consumption
of messages

• MQ: more than one MQ can be used to balance the load if the file-system is a bottleneck

• handler: if the application handler is a bottleneck, more instances can run in parallel

Figure 3. Messaging bricks and the RPC use case.

The producer use case is symmetric to the consumer side. Another important use case which
is often used is the RPC use case, in figure 3 a set of MTA and MQ is combined to solve the
use case:

• input: one MTA is configured to receive messages from the broker and store them in an
input MQ

• rpc server: it processes requests from the input MQ and produces responses in an output
MQ



• output: one MTA is configured to forward responses from the output MQ to the broker

Looking at the two previous use cases it should be clear that such flexible components give
significant benefits:

• an application can use messaging without knowing anything about messaging, protocols
and other details

• only the interaction with the MQ is required (very simple API)

• a single MTA implementation can be reused across multiple applications avoiding completely
code duplication

• a swap of MTA is enough to support different protocols/broker technologies

5.2. Assembling many messaging components

Figure 4. Example of a consumer setup.

An application using messaging could be developed for environment which grows and shrinks
as needed, if a simple use case (e.g. figure 4) is taken into account there are already five processes
to run and monitor.

The best way to manage these components is to use supervisors[17]. Like in Erlang OTP
it is possible to declare hierarchies of supervisors and workers to build services. Hierarchies
are useful and important because supervisors can be configured to handle children failures in a
custom way.

The example shown in figure 4 could be implemented with the supervision tree in figure 5:

• mta1 and handler1 are grouped under the same supervisor. handler1 depends on mta1
because if there is no messages it is pointless for him to run and we may want to monitor
their aggregated status

• mta2 and handler2/3 are grouped under the same supervisor for a similar reason to the
previous point

• since a hierarchy is expected we can then aggregate the two previous supervisors in a top
one where we can customize the failure policies

5.3. Software availability
All the components mentioned here are freely available. The EMI Product Team has selected
and/or developed some of them[18]:

For the message queue:



Figure 5. Supervision tree for example in figure 4.

• Perl libraries: perl-Messaging-Message + perl-Directory-Queue

• Python libraries: python-messaging + python-dirq

For the messaging transfer agent, there are two implementations[19]:

• stompclt: a versatile client for the STOMP[20] protocol

• amqpclt: a versatile client for the AMQP[21] protocol

For the supervisor[19]:

• simplevisor: a simple daemons supervisor

6. Current state
Currently, three different messaging services are used by WLCG:

EGI: this is the service which is operated by EGI and used by the Grid operational tools.

ATLAS-DDM: this service is used by the ATLAS experiment for several applications like the
DDM Tracer and other operational tools; it consists of 2 uncoupled production brokers plus
1 testing broker. The two production brokers are running Apache ActiveMQ and the test
broker is running both ActiveMQ and ActiveMQ Apollo[22].

Dashboard: this service is used by the dashboard team for their monitoring application; it
consists of 2 uncoupled production brokers plus 1 testing broker. Like the ATLAS service
the two production brokers are running Apache ActiveMQ and the test broker is running
both Apache ActiveMQ and Apache ActiveMQ Apollo.

All the applications use STOMP (mainly) or OpenWire[23] (rarely) to access the brokers
that run either ActiveMQ 5.x or ActiveMQ Apollo (that should become ActiveMQ 6).

7. Future
In the future, we expect many more applications using messaging and therefore we expect both
the number of brokers and the number of dedicated services to grow significantly.

Messaging is a dynamic technology and will in parallel also change. ActiveMQ is getting to
the end of its life-cycle while other broker software like ActiveMQ Apollo, RabbitMQ[24] and
Qpid[25] get more and more solid for the future. In terms of protocols, AMQP usage will very
likely grow now that it has matured (the 1-0 specification has been released on October 2011).



So we also expect a growth in the number of broker types used as well as in the number of
protocols used.

Beyond this, we foresee that the same kinds of services and components will be used outside
of the Grid. For instance, at CERN, the Agile Infrastructure project is about to use a dedicated
service running ActiveMQ Apollo and RabbitMQ.

8. Conclusions
The architectures presented in this paper (services: independent brokers; software: components
to be assembled) can support this multidimensional growth in the use of messaging for WLCG.

Future usage of messaging in WLCG should follow guidelines and recommendations for a
more sustainable messaging service. It is fundamentally important to be broker and protocol
agnostic when making usage of messaging; it is required in order to have the flexibility to switch
easily between different technologies and avoid to remain stuck on a legacy technology.

References
[1] Enterprise Messaging http://en.wikipedia.org/wiki/Enterprise_messaging_system.
[2] EGI Messaging Service https://wiki.egi.eu/wiki/Message_brokers.
[3] Service Availability Monitoring framework based on commodity software, #404 CHEP 2012.
[4] The ATLAS DDM Tracer monitoring framework, #337 CHEP 2012.
[5] New solutions for large scale functional tests in the WLCG infrastructure with SAM/Nagios: the experiments

experience, #263 CHEP 2012.
[6] SYNCAT - Storage Catalogue Consistency, #419 CHEP 2012.
[7] Next generation WLCG File Transfer Service (FTS), #436 CHEP 2012.
[8] Service monitoring in the LHC experiments, #245 CHEP 2012.
[9] OSG Ticket Synchronization: Keeping Your Home Field Advantage In A Distributed Environment, #180

CHEP 2012.
[10] WMSMonitor advancements in the EMI era, #487 CHEP 2012.
[11] Implementing data placement strategies for the CMS experiment based on a popularity mode, #176 CHEP

2012.
[12] Apache ActiveMQ http://activemq.apache.org/.
[13] CERN Messaging Team https://tomtools.cern.ch/confluence/display/MIG/Home.
[14] EMI Messaging Product Team https://twiki.cern.ch/twiki/bin/view/EMI/EMIMessaging.
[15] WLCG Messaging Roadmap

https://tomtools.cern.ch/confluence/download/attachments/983148/wlcg-messaging-roadmap.pdf.
[16] Apache Camel http://camel.apache.org/.
[17] Erlang supervisors http://www.erlang.org/doc/design_principles/sup_princ.html.
[18] EMI Messaging Libraries https://twiki.cern.ch/twiki/bin/view/EMI/MessagingLibraries.
[19] EMI Messaging Software https://twiki.cern.ch/twiki/bin/view/EMI/MessagingSoftware.
[20] STOMP - The Simple Text Oriented Messaging Protocol http://stomp.github.com/.
[21] AMQP - Advanced Message Queuing Protocol http://www.amqp.org/.
[22] Apache ActiveMQ Apollo http://activemq.apache.org/apollo/index.html.
[23] OpenWire protocol http://activemq.apache.org/openwire.html.
[24] RabbitMQ http://www.rabbitmq.com/.
[25] Apache Qpid http://qpid.apache.org/.


